Reaktionen der Methylencyclopropane, VII¹⁾

Nickel(0)-katalysierte Cycloadditionen von Methylencyclopropanen mit Acrylsäure-alkylestern

Paul Binger*, Axel Brinkmann und Petra Wedemann

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim a. d. Ruhr

Eingegangen am 20. Dezember 1982

An Nickel(0)-Katalysatoren, bevorzugt Bis(1,5-cyclooctadien)nickel, gelingen Cycloadditionen von Methylencyclopropan (1) und dessen am Ring methylierten Derivaten 5, 9 und 12 mit Acryl-säure-alkylestern unter milden Bedingungen $(0 - 50 \,^\circ \text{C})$. In Abhängigkeit von dem Methylierungsgrad des Dreirings entstehen aus 1 und 5 nur 3-Methylencyclopentancarbonsäure-alkylester (4 bzw. 6), aus 9 Gemische dieser Methylencyclopentan-Derivate (10) mit einem Spiro[2.3]hexancarbonsäure-alkylester (11) oder aus 12 nur das Spiro[2.3]hexanderivat 13. Mit 12 tritt auch Isomerisierung zu 2,3,3-Trimethyl-1,4-pentadien (15) ein. Bei 9 kann das Methylencyclopentan-/Spiro[2.3]hexancarbonsäureester-Verhältnis durch die Größe des Alkylrestes im Acrylsäureester beeinflußt werden. – Dagegen konkurrieren bei den Ni⁰-katalysierten Reaktionen von 1 mit substituierten Acrylsäureestern (Crotonsäure-methylester, Maleinsäure-diethylester) Cyclodimerisierung zu 2 und 3 mit der Codimerisierung zu 16 und 17.

Reactions of Methylenecyclopropanes, VII¹⁾

Nickel(0)-catalysed Cycloadditions of Methylenecyclopropanes with Alkyl Acrylates

Cycloaddition reactions of methylenecyclopropane (1) and of the ring-methylated methylenecyclopropanes 5, 9, and 12 with alkyl acrylates are performed at nickel(0) catalysts, such as bis(1,5-cyclooctadiene)nickel unter mild conditions (0-50 °C). Depending on the degree of methylation of the three-membered ring, 1 and 5 give only alkyl 3-methylenecyclopentanecarboxylates (4 and 6), whereas 9 leads to a mixture of the methylenecyclopentane derivative 10 and the alkyl spiro[2.3]hexanecarboxylate 11, and 12 react to form only the spiro[2.3]hexane derivative 13. With 12 isomerisation to 2,3,3-trimethyl-1,4-pentadiene (15) also takes place. In the case of 9 the ratio of methylenecyclopentane to spiro[2.3]hexanecarboxylate can be influenced by the size of alkyl groups. – In the Ni⁰-catalysed reactions of 1 with substituted acrylates (methyl crotonate or diethyl maleate) codimerisation to 16 and 17 competes with cyclodimerisation to 2 and 3.

Methylencyclopropane haben sich als ausgezeichnete Ausgangsmaterialien für die organische Synthese erwiesen. Besonders ihre Übergangsmetall-katalysierten Cycloadditionen mit sich selbst oder mit Alkenen führen in regioselektiven und z. T. auch stereoselektiven Reaktionen zu einer Vielzahl von Cycloalkanderivaten, insbesondere zu Methylencyclopentanen²⁾. Hierbei führen charakteristische Unterschiede in den Reaktionswegen zu teilweise unterschiedlichen Reaktionsprodukten, je nachdem ob man

© Verlag Chemie GmbH, D-6940 Weinheim, 1983 0009 – 2940/83/0808 – 2920 \$ 02.50/0 Pd⁰- oder Ni⁰-Verbindungen als Katalysatoren einsetzt. Während durch Pd⁰-Katalysatoren ausschließlich [3 + 2]-Cycloadditionen unter C-2/C-3-Öffnung des Dreirings bewirkt werden³, treten an Ni⁰-Katalysatoren neben [3 + 2]-Cycloadditionen unter C-1/C-2-Öffnung auch [2 + 2]-Cycloadditionen auf. Als gemeinsame metallorganische Zwischenprodukte werden hierbei höchstwahrscheinlich Nickelacyclopentane durchlaufen, wobei die Dreiringöffnung durch Cyclopropylmethyl/3-Butenyl-Umlagerung zustande kommt⁴ (Gl. 1).

So wird z. B. 1 an reinem Ni(COD)₂-Katalysator mit ca. 50% Ausbeute zu 2 und 3 im Verh. 1:4 cyclodimerisiert⁵⁾. In Anwesenheit von Dialkylfumaraten erhöht sich der Cyclodimerenanteil auf 80%, allerdings geht der 2-Anteil auf 5% zurück⁶⁾.

Nickel(0)-katalysierte [2 + 2]-Cycloadditionen von Methylencyclopropanen mit Olefinen sind bisher nur mit Norbornadien bekannt geworden⁷⁾, während mit elektronenarmen Olefinen (Methylacrylat, Acrylonitril, Methylvinylketon) [3 + 2]-Cycloadditionen unter C-1/C-2-Dreiringöffnung beobachtet wurden⁸⁾. In letzterem Fall benötigt man am Bis(acrylonitril)nickel-Katalysator überschüssiges Methylacrylat, um nach 48 Stunden bei 60°C 3-Methylencyclopentancarbonsäure-methylester (4) mit 82% Ausbeute zu erhalten. Wir haben diese Codimerisierungen noch einmal aufgegriffen, um mit Hilfe von Nickel(0)-Katalysatoren, deren Liganden leichter verdrängbar sind, mildere Reaktionsbedingungen und größere Effizienz zu erreichen. Weiterhin sollten nach unseren Vorstellungen Analogreaktionen mit verschieden hoch methylierten Methylencyclopropanen auch zur Cyclobutanbildung führen, sofern Nickelacyclopentane tatsächlich Zwischenprodukte dieser Katalysen sind. Im folgenden wird gezeigt, daß dies tatsächlich der Fall ist.

Methylencyclopropan (1) reagiert am Bis(1,5-cyclooctadien)nickel [Ni(COD)₂]-Katalysator mit Methylacrylat bereits bei -15 °C. Die für präparative Zwecke günstigsten Bedingungen sind die Umsetzung von äquimolaren Mengen 1 und Methylacrylat bei Raumtemperatur, wobei 4 unter Erwärmung in über 90proz. Ausbeute gebildet wird.

1-Methyl-2-methylencyclopropan (5) ist deutlich weniger reaktiv als 1. Mit Methyloder *tert*-Butylacrylat ist die Ni-katalysierte Codimerisierung erst nach 10 Stunden bei 40° C beendet. Neben ca. 30% Isomerisierungsprodukten von 5 (1,4- und 1,3-Pentadien; Isopren) werden zu 33 - 43% die Codimeren **6a** bzw. **e** als *cis/trans*-Gemische gebildet. Bei Verwendung von Methylacrylat ist die Isomerisierung von *cis/trans*-**6a** zu *cis/trans*-**7a** und **8a** offensichtlich nicht zu vermeiden, denn man kann immer nur eine Mischung dieser drei Codimeren gewinnen.

Dagegen läßt sich 1,1-Dimethyl-2-methylencyclopropan (9) am Ni(COD)₂-Katalysator mit Alkylacrylaten wiederum glatt codimerisieren. Hierbei werden erstmals neben den Methylencyclopentan-Derivaten 10a - e auch die Spirohexan-Derivate 11a - e gebildet. 11a wurde bei der früher beschriebenen Analogreaktion mit Bis(acrylonitril)nickel als Katalysator nicht gefunden^{8a)}. Das 10: 11-Verhältnis ist in gewissem Umfang durch die Größe des Alkylrestes im Alkylacrylat beeinflußbar. Es fällt kontinuierlich mit raumerfüllenderen Alkylresten von 81: 19 (R = Methyl) bis auf 60: 40 (R = tert-Butyl; vgl. Tab. 1), 11 fällt dabei immer als *cis/trans*-Gemisch an, wobei der *trans*-Anteil überwiegt.

Schließlich liefert die Ni(COD)₂-katalysierte Codimerisierung von 1,1,2,2-Tetramethyl-3-methylencyclopropan (12) mit Methylacrylat das Spirohexan-Derivat 13 als Hauptprodukt mit 75% Ausbeute. Daneben entsteht (in Spuren) als einziges Ringöffnungsprodukt im Dimerenbereich 5,5,6-Trimethyl-4-methylen-2,6-heptadiensäuremethylester (14), der offensichtlich durch doppelte Ni-H- β -Eliminierung entstanden ist. Auch eine Isomerisierung von 12 zu 15 läßt sich nicht ganz vermeiden.

Tab. 1. Codimerisierung von 1,1-Dimethyl-2-methylencyclopropan (9) mit Acrylsäure-alkylestern am Ni(COD)₂-Katalysator bei 50 °C

٨	Ausgar	ngsmate	rialie	n	Codimere						
alkylester				9		so.	Sup.		[% GC]		
R	g r		g	mmol	g	%	°C/Torr	Nr.	<i>cis-</i> 11	trans- 11	10
СН3	19	220	9	110	12.4	67	43/0.5	a	6.3	12.3	81.4
C ₂ H ₅	18.5	180	7.6	90	11.5	69	35 - 40/0.1	b	7.5	15.0	77.5
i-C ₃ H ₇	12.8	112	4.6	56	7.8	71	48 - 50/0.1	c	8.1	18.4	73.5
n-C ₄ H ₉	26.2	205	8.4	102	15.2	71	70-90/0.1	d	7.6	15.0	77.4
 $t-C_4H_9$	19.5	160	6.2	80	11.4	68	30-40/0.001	e	9.2	30.8	60.0

Beim Versuch, diese Ni⁰-katalysierten Codimerisierungen auf andere elektronenarme Alkene zu übertragen, waren wir nur teilweise erfolgreich. So erhält man z. B. aus 1 und Methylcrotonat nach 20 Stunden bei 35 °C das entsprechende Methylencyclopentan-Derivat *trans*-16 mit 43% Ausbeute. Als weiteres Reaktionsprodukt konnte das Cyclodimere 3 mit 7% Ausbeute gefunden werden.

Der Verlauf der bereits beschriebenen^{8b,9)} Ni⁰-katalysierten Codimerisierung zwischen 1 und Maleinsäure-dimethylester [MSM] ist nach unserer Beobachtung deutlich abhängig vom Molverhältnis 1: MSM. In äquimolaren Mengen eingesetzt, entstehen zu 42% die Cyclodimeren 2 und 3 und zu 38% das Codimere 17. Mit einem dreifach molaren Überschuß an MSM erhält man dagegen mit 78% Ausbeute *cis/trans*-17 im Verhältnis ca. 9:1. *cis/trans*-17 ist thermisch instabil. Beim Erhitzen auf 200°C erfolgt quantitative Isomerisierung zu 18.

Die ebenfalls beschriebene Ni⁰-katalysierte Codimerisierung zwischen 1 und Fumarsäure-dialkylester (Katalysator Bis(acrylonitril)nickel)^{8b,9)} verläuft in Anwesenheit von Ni(COD)₂ anders. Hauptreaktion ist in jedem Fall, auch bei einem Überschuß von Fumarsäure-dialkylester, die Cyclodimerisierung zu 2 und 3. Codimere werden nur zu maximal 15% gebildet⁶⁾. Dagegen findet im Gegensatz zu Literaturangaben^{8a,9)} praktisch keine Ni⁰-katalysierte Codimerisierung zwischen 1 und Acrylonitril oder Methylvinylketon statt (eingesetzter Katalysator Ni(COD)₂). Beim Erhitzen auf 60 – 90°C tritt Polymerisation der elektronenarmen Alkene ein.

Die dargestellten, z.T. neuen Codimeren der Methylencyclopropane 1, 5, 9 und 12 mit elektronenarmen Olefinen wurden vor allem durch ihre MS-, IR- und ¹H- bzw. ¹³C-NMR-Spektren identifiziert. Wurden die Codimeren als Isomerengemische erhalten, wie aus 5 und 9, so mußten die reinen Isomeren vorher mittels präp. GC abgetrennt werden, da eine Reingewinnung durch fraktionierende Destillation nicht möglich war.

Die *cis/trans*-Zuordnungen bei **11a** – **e** wurden auf Grund der unterschiedlichen chemischen Verschiebung der Vierringprotonen 2- und 3-H (vgl. Tab. 2) und deren Kopplungskonstanten für *cis*- und *trans*-**11** ($J_{cis} = 9$; $J_{trans} = 7.5$ Hz) vorgenommen. Zwischen *cis*- und *trans*-**6e** konnte anhand der ¹H-NMR-Spektren nicht unterschieden werden. Deren Zuordnung wurde durch Inkrementenberechnungen bei den ¹³C-NMR-Spektren durchgeführt, jedoch ist das Ergebnis nicht zweifelsfrei.

Tab. 2. ¹H-NMR-Daten von *cis*-11a,e; *trans*-11a,e und 10a,e (80 MHz, *J* in Hz; die Atom-Numerierung weicht für Vergleichszwecke von der systematischen Bezifferung ab)

Verbindung	R		1-H	2-Н	3-H	4-H	5-H	6-H	7-H
	CH3	cis-11a ^{a)}	3.13 [m]	2.54 [m; $J_{12} = 7.5$]	1.91 [m; $J_{13} = 9$]	0.86 [s]	0.13 [s]	3.41 [s]	-
ş ş	C(CH ₃) ₃	cis-11e ^{b)}	3.08 [m]	2.34 [m; $J_{12} = 7.5$]	1.98 [m; $J_{13} = 9$]	0.90 [s]	0.23 [s]	1.42 [s]	_
CO ₂ Ř	CH3	trans-11a ^{a)}	2.96 [m]	2.30 [m]	2.26 [m]	0.85 [s]	0.17 [s]	3.45 [s]	-
	C(CH ₃) ₃	trans-11e ^{b)}	2.92 [m]	2.27 [m]	2.11 [m]	0.92 [s]	0.22 [s]	1.42 [s]	-
	CH3	10 a ^{a)}	4.80 4.73 [m]	2.7 [m]	2.7 [m]	1.8 [m]	1.11 ^{c)} [s]	1.00°) [s]	3.63 [s]
t.	C(CH ₃) ₃	10e ^{b)}	4.78 4.73 [m]	2.6 [m]	2.6 [m]	1.76 [m]	1.10 ^{c)} [s]	1.01°) [s]	1.40 [s]

^{a)} [D₆]Benzol; Referenz TMS. - ^{b)} CDCl₃; Referenz TMS. - ^{c)} 6- und 5-H-Werte untereinander austauschbar.

cis- und *trans*-11b – d sowie 10b – d wurden nicht in reiner Form isoliert; die Verbindungen wurden anhand ihrer GC-Retentionszeiten bestimmt und die Zuordnung durch ¹³C-NMR-Messungen der jeweiligen Isomerengemische bestätigt (siehe Tab. 3).

Die geschilderte Abhängigkeit des Verlaufs der Ni⁰-katalysierten Codimerisierungen von Methylencyclopropanen mit Alkylacrylaten vom Substitutionsgrad des Dreirings

Tab. 3. ¹³C-NMR-Daten von *cis*-11b – e; *trans*-11b – e und 10b – e (CDCl₃, Referenz TMS; die Atom-Numerierung weicht für Vergleichszwecke von der systematischen Bezifferung ab)

	Nr.	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9
	cis-11b ^{a)}	32.65	30.49	26.08	25.97	17.51	21.42	175.47		
CO2R	$(\mathbf{R} = \mathbf{Et})$	d	t	S	t	S	q	S		
	cis-11c ^{a)}	32.96	30.43	26.12	25.91	17.52	21.44	174.97		
Ŷ	$(\mathbf{R} = i\mathbf{Pr})$	d	t	s	t	S	q	S		
	cis-11e ^{b)}	33.67	30.41	25.96	25.89	17.45	21.44	175.13		
	$(\mathbf{R} = t\mathbf{B}\mathbf{u})$	d	t	s	t	s	q	s		
ζO ₋ R	trans-11b ^{c)}	33.48	29.98	25.92	25.96	17.63	21.67	175.65		
h	$(\mathbf{R} = \mathbf{Et})$	d	t	s	t	s	q	s		
, , , , , , , , , , , , , , , , , , , 	trans-11c ^{c)}	33.74	29.99	26.07	26.03	17.60	21.67	175.16		
6	$(\mathbf{R} = i\mathbf{Pr})$	d	t	s	t	s	q	s		
	trans-11e ^{b)}	34.51	29.96	25.91	25.97	17.59	21.69	175.34		
	$(\mathbf{R} = t\mathbf{B}\mathbf{u})$	d	t	s	t	s	q	S		
9	10 b ^{d)}	40.95	45.45	42.22	159.40	36.45	103.89	29.98	28.43	175.44
CO ₂ R	$(\mathbf{R} = \mathbf{E}\mathbf{t})$	d	t	s	s	t	t	q	q	s
•	10c ^{d)}	41.17	45.44	42.22	159.52	36.41	103.80	29.98	28.38	174.97
۲,	$(\mathbf{R} = i\mathbf{P}\mathbf{r})$	d	t	s	s	t	t	q	q	s
	10e ^{b)}	41.93	45.47	42.17	159.70	36.41	103.67	29.40	28.49	174.85
	$(\mathbf{R} = t\mathbf{B}\mathbf{u})$	d	t	S	S	t	t	q	q	S

a) Im Gemisch mit *trans*-11 und 10 gemessen; 10: *trans*-11: *cis*-11 (aus Intensitäten für C-1) $\mathbf{b} = 78:14:7$; $\mathbf{c} = 77:15:7.$ – ^{b)} Reine Verbindungen. – ^{c)} Im Gemisch mit *cis*-11 und 10 gemessen; Zusammensetzung siehe ^{a)}. – ^{d)} Im Gemisch mit *cis*-11 und *trans*-11 gemessen; Zusammensetzung siehe ^{a)}.

Schema 1. Verlauf der Ni⁰-katalysierten Codimerisierung von Methylencyclopropanen mit Alkylacrylaten am Beispiel von **9**

läßt sich zwanglos erklären, wenn man ein Nickelacyclopentan-Derivat als gemeinsame metallorganische Zwischenstufe annimmt. Dieses Nickelacyclopentan-Derivat sollte durch oxidative Kopplung zweier π -gebundener Alkene gebildet werden. Die Spirohexan-Derivate **11** und **13** würden daraus durch direkte reduktive Eliminierung entstehen, während der Methylencyclopentan-Bildung eine Cyclopropyl/3-Butenyl-Umlagerung vorgelagert wäre. Diese Umlagerung geht offenbar auch bei dem konformativ relativ starren Nickelacyclopentan-System meist so schnell vonstatten, daß die direkte reduktive Eliminierung zum Vierring nicht mehr zum Zuge kommt. Behindert man allerdings eine Wechselwirkung des Nickels mit den Dreiring-C-Atomen im Nickelacyclopentan durch Einführung von zwei geminalen Substituenten, so wird die Vierringbildung etwa gleichrangig und beim Vorhandensein von vier Substituenten sogar zur alleinigen Reaktion.

Diese Vorstellungen werden zusätzlich durch die folgenden Beobachtungen gestützt:

1. Modellverbindungen für das in Gl. (1) formulierte Nickelacyclopentan-Derivat konnten mit 2,2'-Bipyridin⁴⁾ und 1,2-Bis(dimethylphosphino)ethan¹⁰⁾ als stabilisierende Liganden dargestellt werden. Sie verhalten sich wie in Gl. (1) formuliert.

2. An der Doppelbindung substituierte Methylencyclopropane sind nicht mehr in der Lage, analog Schema 1 Nickelacyclopentane zu bilden. Sie reagieren deshalb mit einem zweiten Olefin nach Öffnung der Dreiringbildung zwischen C-2 und C-3¹¹). Offensichtlich ist diese Bindung die zweitreaktivste im Molekül.

3. Öffnung der C-1/C-2-Dreiringbindung in Methylencyclopropanen tritt an Ni⁰-Katalysatoren nur ein, wenn eine Wechselwirkung mit einer zweiten Doppelbindung aus sterischen Gründen nicht möglich ist¹²⁾ und/oder die C-2/C-3-Dreiringbindung an beiden C-Atomen durch Substituenten mit einem +I-Effekt verfestigt werden²⁾. So wird z. B. bei den Codimerisierungen von **12** mit Methylacrylat zu 15% Isomerisierung zu **15** beobachtet.

Experimenteller Teil

Alle Arbeiten wurden unter Argon in wasserfreien Reagenzien durchgeführt. – IR¹³): Perkin-Elmer 521 und 297. – MS¹⁴): Varian CH-5 bei 70 eV. – ¹H-NMR¹⁵): Bruker WP 80 FT und Varian HA-100 (innerer Standard TMS). – ¹³C-NMR¹⁶): Bruker WM 300 (innerer Standard TMS). – GC analytisch¹⁷): a) normale Trennungen: 70 m OV 101; Temp. $60-240^{\circ}C/4^{\circ}C/$ min; b) Trennungen von *cis/trans*-6 und -10, *cis/trans*-11: 50 m CW 20 M; Temp. $60-240^{\circ}C/6^{\circ}C/min$; präparativ¹⁸): modifizierte Geräte der Firma Hupe und Busch, Karlsruhe; Säulenmaterial und Bedingungen siehe Experimente. – Elementaranalysen: Firma Dornis und Kolbe, Mülheim a. d. Ruhr.

Chemikalien: Acrylsäure-alkylester, Maleinsäure-dimethylester (BASF); *trans*-Crotonsäuremethylester (Merck-Schuchardt). Nach Literaturvorschriften wurden dargestellt: Methylencyclopropan $(1)^{19}$; 1-Methyl-2-methylencyclopropan $(5)^{20}$; 1,1-Dimethyl-2-methylencyclopropan (9)²⁰; 1,1,2,2-Tetramethyl-3-methylencyclopropan (12)²⁰ und Bis(1,5-cyclooctadien)nickel = Ni(COD)₂²¹.

Nickel(0)-katalysierte Codimerisierungen von Methylencyclopropanen mit Acrylsäure-alkylester

1. Mit Methylencyclopropan (1); Darstellung von 3-Methylencyclopentancarbonsäure-methylester (4): Zur hellroten Lösung von 0.56 g (ca. 2 mmol) Ni(COD)₂ in 77.4 g (0.90 mol) Acrylsäuremethylester werden, bei Raumtemp. beginnend, in 3 h 48.6 g (0.90 mol) 1 getropft (-78 °C im Tropftrichter!). Unter starkem Erwärmen auf max. 70 °C (zeitweises Kühlen mit einem Wasserbad) wird die Lösung dunkelrot. Nach weiteren 2 h Rühren, wobei sich die Lösung auf 25 °C abkühlt, wird über eine 60-cm-Füllkörperkolonne destilliert. Nach 7.5 g Vorlauf vom Sdp. bis 70 °C/750 Torr mit (GC) 92% Acrylsäure-methylester, 5% 1,3-Butadien und 1.3% Isobuten erhält man 115.2 g farbloses 98.3proz. (GC) 4 vom Sdp. 54 °C/12 Torr (92% Ausb.); Rest (GC): 1.2% 3 und 0.5% COD; 6 g dunkler, öliger Rückstand. – IR, MS, ¹H-NMR und ¹³C-NMR übereinstimmend mit Literaturangaben ^{3,8a}.

Anmerkung: Bei -15° C wird aus 16 g (0.30 mol) 1 und 26 g (0.30 mol) Acrylsäure-methylester in Anwesenheit von 0.6 g Ni(COD)₂ nach 24 h 4 mit 87% Ausb. erhalten.

2. Mit 1-Methyl-2-methylencyclopropan (5); Darstellung von 3-Methyl-4-methylencyclopentancarbonsäure-alkylestern (cis/trans-6) (allgemeine Versuchsbeschreibung): Zu ca. 1 mmol Ni(COD)₂ in ca. 250 mmol Acrylsäure-alkylester (R = Methyl, tert-Butyl) werden bei 40°C in 15 min ca. 60–100 mmol 5 getropft. Nach weiteren 10 h Rühren bei 40°C wird die weinrote Lösung destilliert.

a) Bei Verwendung von 30.8 g (252 mmol) Acrylsäure-methylester und 6.1 g (90 mmol) 5 erhält man 28 g farblose Flüssigkeit vom Sdp. bis 25 °C/12 Torr mit (GC) 92.7% Acrylsäure-methylester; 0.7% 1,4-Pentadien; 0.1% 5; 3.7% Isopren, 1.9% *trans*- und 0.3% *cis*-1,3-Pentadien [insgesamt 1.8 g (30%) Isomere, die durch Retentionszeitvergleich mit authentischem Material charakterisiert wurden]. Weiterhin erhält man 6.7 g vom Sdp. 52-55 °C/0.001 Torr mit (GC) 31.4% *cis/trans*-7a; 30.2% *cis/trans*-6a und 7.0% 8a [insgesamt 4.6 g (33%) Codimere]; Rest (31.4%) 15 unbekannte Verbindungen mit jeweils 2-3% im höhersiedenden Bereich; 0.1 g zäher Rückstand.

Charakterisierung von *cis/trans*-**6a**, *cis/trans*-**7a** und **8a** nach Abtrennung durch präp. GC [6 m XE-60, \emptyset 10 mm; 320 ml N₂/min; 140 °C].

1. 3-Methyl-4-methylencyclopentancarbonsäure-methylester (cis/trans-6a): Reinheit (GC) 87.7%; Rest 10.1% 7a und 2.2% 8a. – MS: gef. Molmasse = 154. – ¹H-NMR (CCl₄, 80 MHz): δ = 4.74 und 4.65 (m, 2H); 3.44 (s, 3H); 2.50 (m, 3H); 1.9–1.5 (m, 3H); [0.98 (d, J = 6 Hz) und 0.92 (d, J = 6 Hz), 3H].

2. 3,4-Dimethyl-2-cyclopenten-1-carbonsäure-methylester (7a): Reinheit (GC): 91.4%; Rest 5.9% 6a; 2.7% 8a. - MS: gef. Molmasse = 154. - 1 H-NMR (CCl₄, 80 MHz): δ = 5.14 (m, 1H); 3.42 (s, 3H); 3.3 (m, 1H); 2.24 (m, 1H); 1.53 (m, 3H); 0.95 (m, 2H); 0.85 (d, J = 6 Hz; 3H).

3. 3,4-Dimethyl-3-cyclopenten-1-carbonsäure-methylester (8a): Reinheit (GC): 98%. – MS: gef. Molmasse = 154. – ¹H-NMR (CCl₄; 80 MHz): δ = 3.50 (s, 3H); 2.79 (m, 1H); 2.42 (m, 4H); 1.48 (s, 6H).

C₉H₁₄O₂ (154.2) Ber. C 70.10 H 9.15 Gef. C 69.98 H 9.07

b) Bei Verwendung von 32.2 g (252 mmol) Acrylsäure-*tert*-butylester und 4.3 g (63 mmol) 5 erhält man 29.3 g farblose Flüssigkeit vom Sdp. bis 30 °C/12 Torr mit (GC) 88.3% Acrylsäure-*tert*butylester; Rest 2.6% 1,4-Pentadien; 1.1% Isopren [zusammen 1.1 g (25%) Isomere]; 1.1% 5 und

6.9% einer Vielzahl unbekannter Verbindungen. Anschließend gehen 6.2 g vom Sdp. 55-60 °C/0.001 Torr über mit (GC) 54.8% trans-6e [3.4 g (28%)]; 28.6 cis-6e [2.0 g (16%)]; 6.4\%; 5.5\%; 3.0\% drei unbekannte Verbindungen.

Charakterisierung von *trans*-6e und *cis*-6e nach Abtrennung durch präp. GC [4.5 m FFAP, \emptyset 8 mm; 280 ml N₂/min; 100 °C].

trans-3-Methyl-4-methylencyclopentancarbonsäure-tert-butylester (*trans-6e*): Reinheit (GC) 91%; Rest *cis-6e*. $^{-1}$ H-NMR (CDCl₃; 80 MHz): $\delta = [4.76 \text{ (m)}, 4.70 \text{ (m)}, 2\text{H}]; 2.5 \text{ (br. m}, 4\text{H}); 2.0 \text{ (br. m}, 1\text{H}); [1.45 \text{ (m)}; 1.35 \text{ (s)}, 10\text{H}]; 0.98 \text{ (d}, J = 6.5 \text{ Hz}, 3 \text{ H}). <math>^{-13}$ C-NMR (CDCl₃): δ des *trans-6e*-Anteils = 175.30 (s); 156.13 (s); 104.58 (t); 80.00 (s); 42.49 (d); 38.23 (t); 37.34 (d); 36.45 (t); 28.15 (q); 19.41 (q). - IR: 1730 (C=O), 1650 \text{ cm}^{-1} (C=C).

cis-3-Methyl-4-methylencyclopentancarbonsäure-tert-butylester (*cis-***6e**): Reinheit (GC) 99%. − ¹H-NMR (CDCl₃; 80 MHz): δ = [4.82 (m); 4.73 (m), 2H]; 2.55 (m, 4H); 2.3 − 1.87 (br. m, 1H); 1.87 − 1.45 (br. m, 1H); 1.39 (s, 9H); 1.04 (s, 3H). − ¹³C-NMR (CDCl₃): δ = 174.79 (s); 155.52 (s); 104.60 (t, ¹J_{CH} = 155.7 Hz); 80.04 (s); 43.52 (d, ¹J_{CH} = 133 Hz); 39.10 (t, ¹J_{CH} = 130 Hz); 38.90 (d, ¹J_{CH} = 129 Hz); 36.25 (t, ¹J_{CH} = 131 Hz); 28.17 (q, ¹J_{CH} = 127.0 Hz); 18.20 (q; ¹J_{CH} = 125.9 Hz). − IR: 1730 (C=O); 1630 cm⁻¹ (C=C).

C12H20O2 (196.3) Ber. C 73.43 H 10.27 Gef. C 73.41 H 10.25

3. Mit 1,1-Dimethyl-2-methylencyclopropan (9)

Allgemeine Arbeitsvorschrift: Zu einer Lösung von ca. 0.5 mmol Ni(COD)₂ in ca. 200 mmol eines Acrylsäure-alkylesters (R = Methyl, Ethyl, Isopropyl, *n*- und *tert*-Butyl) werden bei 50 °C in 0.5 h 100 mmol **9** getropft. Dann wird weitere 10 h bei dieser Temp. gerührt. Anschließend werden alle bis 100 °C/0.001 Torr flüchtigen Bestandteile abdestilliert und dann nochmals fraktionierend destilliert. Nach einem Vorlauf, der hauptsächlich den überschüssigen Acrylsäure-alkylester enthält, erhält man die Codimeren, die aus einem Gemisch der drei Isomeren **10**, *cis*- und *trans*-**11** bestehen (Menge, Sdp. und Zusammensetzung der Isomeren siehe Tab. 1).

Charakterisierung der Produkte nach Abtrennung durch präp. GC (6 m XE 60, \emptyset 20 mm; 850 ml N₂/min; 120°C für *cis*- und *trans*-11a und 10a; 6 m FFAP, \emptyset 10 mm; 310 ml N₂/min; 110°C für *cis*- und *trans*-11e und 10e).

cis-1,1-Dimethylspiro[2,3]hexan-5-carbonsäure-methylester (*cis-11a*): Reinheit (GC) 96.4%; Rest 3.6% 10a. – MS: gef. Molmasse = 168. – ¹H-NMR: siehe Tab. 2. – IR: 1730 cm⁻¹ (C=O). $C_{10}H_{16}O_2$ (168.2) Ber. C 71.39 H 9.59 Gef. C 71.52 H 9.53

cis-1,1-Dimethylspiro[2.3]hexan-5-carbonsäure-tert-butylester (*cis-11e*): Reinheit (GC) 97.7%; Rest 2.3% *trans-11e.* – MS: gef. Molmasse = $210. - {}^{1}$ H-NMR: siehe Tab. 2. – IR: 1730 cm⁻¹ (C=O). (C=O). C₁₃H₂₂O₂ (210.3) Ber. C 74.24 H 10.54 Gef. C 74.21 H 10.48

trans-1,1-Dimethylspiro[2.3]hexan-5-carbonsäure-methylester (trans-11a): Reinheit (GC) 85.5%; Rest 14.5% 10a. – MS: gef. Molmasse 168. – ¹H-NMR des trans-11a-Anteils siehe Tab. 2.

trans-1, 1-Dimethylspiro[2.3]hexan-5-carbonsäure-tert-butylester (trans-11e): Reinheit (GC) 76%; Rest 24% 10e. – MS: gef. Molmasse = 210. – ¹H-NMR des trans-11e-Anteils siehe Tab. 2.

3,3-Dimethyl-4-methylencyclopentancarbonsäure-methylester (10a): Reinheit (GC) 93%; Rest 7% trans-11a. – MS- und IR-Spektren übereinstimmend mit Literaturangaben^{8a)}. – ¹H-NMR^{8a)}: siehe Tab. 2.

C₁₀H₁₆O₂ (168.2) Ber. C 71.39 H 9.59 Gef. C 71.24 H 9.48

3,3-Dimethyl-4-methylencyclopentancarbonsäure-tert-butylester (10e): Reinheit 89.3%; Rest 10.7% trans-11e. – MS: gef. Molmasse: 210. – ¹H-NMR: siehe Tab. 2. – IR: 1730 (C=O), 1650 cm⁻¹ (C=C).

C13H22O2 (210.3) Ber. C 74.24 H 10.54 Gef. C 74.22 H 10.51

4. Mit 1,1,2,2-Tetramethyl-3-methylencyclopropan (12); Darstellung von 1,1,2,2-Tetramethylspiro[2.3]hexan-5-carbonsäure-methylester (13): Zu 0.65 g (2.36 mmol) Ni(COD)₂ in 13.8 g (161 mmol) Acrylsäure-methylester werden bei 60 °C in 0.5 h 8.9 g (81 mmol) 12 getropft. Nach 8 h Rühren bei 60 °C wird destilliert. Man erhält 9.6 g farblose Flüssigkeit vom Sdp. bis 25 °C/0.1 Torr mit (GC) 70.9% Acrylsäure-methylester: 0.7% 12; 13.5% 15 [zusammen 1.3 g (14.5%)]; 6.9% COD; 2.0% 13; Rest (6%) 4 Peaks und 12.4 g 95.9% (GC) 13 vom Sdp. 48 – 50 °C/0.1 Torr [11.9 g (75%)]; Rest (GC) 0.5% 14 und ca. 5 Peaks mit zusammen 3.6%; 0.75 g zäher, schwarzer Rückstand.

Anmerkung: Aus 0.26 g (0.71 mmol) Ni(COD)₂, 27.3 g (318 mmol) Acrylsäure-methylester und 15.9 g (145 mmol) 12 erhält man nach 5 h Rühren bei 40 °C bei 55% Umsatz von 12 9.4 g vom Sdp. 30-40 °C/0.01 Torr mit (GC) 91.5% 13; 6.3% 14 und 2.2% unbekannte Verbindung.

Charakterisierung der Produkte nach Abtrennung durch präp. GC (6 m XE 60; \emptyset 20 mm; 850 ml N₂/min; 140 °C).

1. 2,3,3-Trimethyl-1,4-pentadien (15): Reinheit (GC) 99%. - ¹H-NMR übereinstimmend mit Literaturangaben ²²).

2. 13: Reinheit (GC) 97.9%. - MS: m/e = 196 (M⁺; <1%); 187 (17); 121 (100), 95 (27), 41 (31). - ¹H-NMR (80 MHz; CCl₄): $\delta = 3.63$ (s, 3 H); 2.94 (m, 1 H); 2.10 (dd; J = 9.0 und 7.5 Hz; 4H); [0.87 (s); 0.83 (s); 12H]. - IR: 1730 cm⁻¹ (C = O).

C12H20O2 (196.3) Ber. C 73.43 H 10.27 Gef. C 73.21 H 10.18

3. 5,5,6-Trimethyl-4-methylen-2,6-heptadiensäure-methylester (14): Reinheit (GC) 98.9%. – MS: $m/e = 194 (M^+; <1\%); 179 (61); 147 (37); 135 (63); 119 (96); 105 (31); 91 (49); 55 (100); 41 (75). – ¹H-NMR (80 MHz; CCl₄): <math>\delta = 7.10 (d, J = 16 Hz; 1H); 6.02 (d, J = 16 Hz; 1H); 5.42 (s, 1H); 5.17 (s, 1H); 4.90 (m, 2H); 3.67 (s, 3H); 1.62 (br. s; 3H); 1.25 (s, 6H).$

Codimerisierung von Methylencyclopropan (1) mit trans-Crotonsäure-methylester und Maleinsäure-dimethylester

1. trans-2-Methyl-3-methylencyclopentancarbonsäure-methylester (16). – Zu 0.60 g (2.18 mmol) Ni(COD)₂ in 22 g (0.22 mol) trans-Crotonsäure-methylester werden bei ca. $35 \,^{\circ}$ C in 2 h 12 g (0.22 mol) 1 (– 78 $^{\circ}$ C-Tropftrichter) getropft. Nach 20 h bei $35 \,^{\circ}$ C werden bei 0.001 Torr und einer Badtemp. von max. $70 \,^{\circ}$ C 30.2 g flüchtige Bestandteile abdestilliert; 3.3 g zäher rotbrauner Rückstand. Anschließende fraktionierende Destillation ergibt nach 10 g (81.2%, GC) Crotonsäure-methylester vom Sdp. bis $30 \,^{\circ}$ C/12 Torr, Rest (GC) 8.2% 3 [0.82 g (6.8%)]; 4.2% COD und 6.4% (8 unbekannte Peaks) sowie 2.4 g Zwischenlauf vom Sdp. $30 - 72 \,^{\circ}$ C 14.6 g (43%) 96proz. (GC) 16 vom Sdp. $73 - 74 \,^{\circ}$ C/12 Torr; ca. 3 g Rückstand.

16: MS: m/e = 154 (M⁺, relat. Int. 3%); **123** (7); **95** (100); **79** (24); **67** (13) und 28 (16). – IR (unverdünnt): 1737 (C=O), 3065, 1652, 880 (Σ C=CH₂) und 1175 cm⁻¹ (C-O). – ¹H-NMR (CCl₄, 100 MHz): $\delta = 4.75$ (m, 2H), 3.61 (s, 3H), 2.65 – 2.05 (m, 4H), 2.0 – 1.75 (m, 2H) und 1.11 (d, J = 6.5 Hz, 3H).

C₉H₁₄O₂ (154.2) Ber. C 70.10 H 9.15 Gef. C 69.96 H 9.02

2. 3-Methylen-cis/trans-1,2-cyclopentandicarbonsäure-dimethylester (cis/trans-17). Zu einer roten Lösung von 1.07 g (3.9 mmol) Ni(COD)₂ in 78.8 g (0.55 mol) Maleinsäure-dimethylester werden bei 40 °C in 1 h 9.6 g (0.18 mol) 1 (-78 °C-Tropftrichter) getropft. Nach 20 h Rühren bei

40 °C werden 84.9 g farblose Flüssigkeit vom Sdp. bis 80 °C/0.001 Torr abdestilliert mit (GC): 2.3% 3, 1.1% COD, 3.8% Fumarsäure-dimethylester, 56.0% Maleinsäure-dimethylester, 2.1% *trans*-17, 32.4% *cis*-17 und 2.3% ca. 3 unbekannte Peaks. Zurück bleiben 2.9 g rotbraune, zähe Masse. Fraktionierende Destillation über eine 20-cm-Vigreuxkolonne liefert nach 51.5 g Vorlauf vom Sdp. bis 75 °C/0.001 Torr 32.2 g farblose Flüssigkeit vom Sdp. 75 – 78 °C/0.001 Torr mit (GC): 9.6% *trans*-17, 86.5% *cis*-17 [zusammen 27.6 g (78%) 17], Rest (3.9%) 3 unbekannte Peaks.

17: IR: 1742 (C = O), 1652 (C = C). - MS: m/e = 198 (M⁺, rel. Int. <1%), 167 (17%), 166 (35), 139 (21), 138 (73), 107 (25), 80 (21), 79 (100), 78 (31), 59 (31). - ¹H-NMR (CDCl₃, 80 MHz): $\delta = 5.18$ (m, 1H), 5.05 (m, 1H), 3.67 (m + s, 7H), 3.04 (m, 1H), 2.60 (m, 1H), 2.3 - 2.0 (br. m, 3H).

C₁₀H₁₄O₄ (198.2) Ber. C 60.59 H 7.12 Gef. C 60.49 H 7.09

Beim Versuch, *cis/trans*-17 mittels präp. GC (6 m, \emptyset 20 mm, PPE, Temp. 200 °C, 75 ml/min N₂) zu trennen, trat quantitative Isomerisierung zu 18 ein (isoliert mit 99% Reinheit). Diese Isomerisierung erfolgt auch bei 10 h Erhitzen auf 200 °C.

3-Methyl-2-cyclopenten-1,2-dicarbonsäure-dimethylester (18): MS: gef. Molmasse 198. – ¹H-NMR (CDCl₃, 80 MHz): $\delta = [3.77 \text{ (m)}, 3.67 \text{ (s)}, 3.65 \text{ (s)}, 7\text{ H}]; 2.5 \text{ (m, 2H)}, 2.11 \text{ (m, 3H)}, 2.08 - 1.74 \text{ (m, 4H)}.$

Anmerkung: In einem analogen Versuch erhielt man aus 14.4 g (0.27 mol) 1 und 42 g (0.29 mol)Maleinsäure-dimethylester in Anwesenheit von 1.03 g (ca. 3.7 mmol) Ni(COD)₂ 5.8 g (42%) Cyclodimere von 1 (GC: 6% 2, 92% 3 und 2% 1,3-Dimethylencyclohexan) und 21.1 g (38%) Codimere (GC: 93% *cis*-17 und 2 unbekannte Peaks mit 4% und 3%).

- ³⁾ P. Binger und U. Schuchardt, Chem. Ber. 114, 3313 (1981); hier auch weiterführende Literatur.
- ⁴⁾ P. Binger, M. J. Doyle und R. Benn, Chem. Ber. 116, 1 (1983).
- ⁵⁾ P. Binger, Angew. Chem. 84, 352 (1972); Angew. Chem., Int. Ed. Engl. 11, 309 (1972).
- ⁶⁾ P. Binger, Synthesis 1973, 427.
- ⁷⁾ R. Noyori, T. Ishigami, N. Hayashi und H. Takaya, J. Am. Chem. Soc. 95, 1574 (1973).
- ⁸⁾ ⁸a) R. Noyori, T. Odagi und H. Takaya, J. Am. Chem. Soc. **92**, 5780 (1970). ^{8b)} R. Noyori, Y. Kumagai, I. Umeda und H. Takaya, J. Am. Chem. Soc. **94**, 4018 (1972).
- 9) R. Noyori, M. Yamakawa und H. Takaya, Tetrahedron Lett. 1978, 4823.
- ¹⁰⁾ H. M. Büch, Dissertation, Univ. Kaiserslautern 1982.
- ¹¹⁾ P. Binger und P. Bentz, J. Organomet. Chem. 221, C33 (1982).
- ¹²⁾ E. Englert, P. W. Jolly und G. Wilke, Angew. Chem. 83, 84 (1971); Angew. Chem., Int. Ed. Engl. 10, 77 (1971).
- ¹³⁾ K. Seevogel, Max-Planck-Institut für Kohlenforschung, Mülheim a. d. Ruhr.
- ¹⁴⁾ D. Henneberg, H. Damen und W. Schmöller, Max-Planck-Institut f
 ür Kohlenforschung, M
 ülheim a. d. Ruhr.
- ¹⁵⁾ R. Benn und G. Schroth, Max-Planck-Institut für Kohlenforschung, Mülheim a. d. Ruhr.
- ¹⁶ R. Mynott und B. Gabor, Max-Planck-Institut für Kohlenforschung, Mülheim a. d. Ruhr.
- ¹⁷⁾ G. Schomburg und F. Sagheb, Max-Planck-Institut für Kohlenforschung, Mülheim a. d. Ruhr.
- ¹⁸⁾ G. Schomburg und H. Kötter, Max-Planck-Institut f
 ür Kohlenforschung, M
 ülheim a. d. Ruhr.
- ¹⁹⁾ R. Köster, S. Arora und P. Binger, Liebigs Ann. Chem. 1973, 1219.
- ²⁰⁾ S. Arora und P. Binger, Synthesis 1974, 801.
- ²¹⁾ B. Bogdanović, M. Kröner und G. Wilke, Liebigs Ann. Chem. 699, 1 (1966).
- ²²⁾ N. F. Cywinski, J. Org. Chem. 30, 361 (1965).

[379/82]

¹⁾ VI. Mitteil.: P. Binger und A. Germer, Chem. Ber. 114, 3325 (1981).

²⁾ P. Binger, M. Cetinkaya, M. J. Doyle, A. Germer und U. Schuchardt, Fundam. Res. Homogeneous Catal. 3, 271 (1979).